Photonics in Production and Process Technology
Photonics in Production and Process Technology
Regular modules
These modules are offered for „Photonics in Production and Process Technology“ on a regular basis. Please note: Each module usually corresponds to a single course with the same title. In a few cases, a module is linked to two courses which will then have different titles.
Dr. Cvecek, 5 ECTS
- Physical phenomena applicable in Laser Technology: EM waves, Beam Propagation, Beam Interaction with matter
- Fundamentals of Laser Technology: Principals of laser radiation, types and theoretical understanding of various types of lasers
- Laser Safety and common applications: Metrology, Laser cutting, Laser welding, Surface treatment, Additive Manufacturing
- Introduction to ultra-fast laser technologies
- Numerical exercises related to above mentioned topics
- Demonstration of laser applications at Institute of Photonic Technologies (LPT) and Bavarian Laser Centre (blz GmbH)
- Possible Industrial visit (e.g. Trumpf GmbH, Stuttgart)
- Optional: invited lecture about a novel laser application
Course is taught in German or English; check in the first session
Dr. Müller, 5 ECTS
- Stereo-Imaging
- Scannen dreidimensionaler Objekte
- Computer-Tomographie und verwandte Techniken
- 2D Darstellung dreidimensionaler Datensätze
- 3D Bildverarbeitung
- 3D Druck-Verfahren
- 3D Projektion und Darstellung
- Darstellung wissenschaftlicher Daten mittels “Virtueller Realität” (VR)
Prof. Dr. Fröba, 5 ECTS
(can be found as „Thermophysikalische Eigenschaften von Arbeitsstoffen der Verfahrens- und Energietechnik“ in the public course catalogue, but is taught in English)
- The importance of thermophysical properties in process and energy engineering
- Equilibrium properties for the characterization of working materials, e.g., in the form of thermodynamic properties of state and other equilibrium properties such as density, internal energy, enthalpy, entropy, specific heat capacity, sound speed, refractive index, surface or interfacial tension, etc.
- Transport properties for the characterization of molecular transfer of mass, energy, and momentum, e.g. diffusion coefficients, Soret coefficient, thermal diffusion coefficient, thermal conductivity, thermal diffusivity, and viscosity
- Use-oriented inquiry of thermophysical property data in scientific literature, table compilations, and databases
- Correlation and prediction of thermophysical properties
- Methods for experimental determination and in-process measurement of thermophysical properties, in particular by laser-optical techniques
- Basics of the theoretical prediction of thermophysical properties by molecular modeling
Prof. Dr. Peukert, Dr. Walter, 5 ECTS
The module introduces modern (optical) techniques for characterization of disperse systems in chemical engineering and materials science. The participants will learn general principles as well as where, when and on which time scale information on materials properties can be gained by the discussed methods. For disperse systems the latter can be for example particle size, particle shape, materials composition, electronic properties and surface chemistry as well as surface charge.
- Introduction to Materials Properties and Classification
- Sampling, Error Sources and their Analysis
- Definition and Determination of Particle Distribution, Size and Shape
- Principles Optics and Diffraction I
- Principles Optics and Diffraction II
- Diffraction, Rayleigh-, Mie scattering
- Static and Dynamic Light scattering
- X-Ray Scattering and Applications
- Zetapotential and its measurement with optical methods
- Analytical Ultra-Centrifugation with Multi-Wavelength Optics
- Nonlinear Optics at Interfaces and its Application
- Color and its Measurement: UV-Vis and Fluorescence Spectroscopy
- Infrared and Raman Spectroscopy including Surface-Enhanced Techniques
- Scanning Mobility Particle Sizer (SMPS)
- Scanning Probe Microscopy and Electron Microscopy
Prof. Dr. Will, Dr. Huber, 5 ECTS
- properties of light; properties of molecules; Boltzmann distribution;
- geometric optics; lasers (HeNe, Nd:YAG, dye, frequency conversion); continuous wave and pulsed lasers;
- photoelectric effect; photodetectors (photomultiplier, photodiode, CCD, CMOS, image intensifier); digital image processing; image noise and resolution;
- shadowgraphy and schlieren techniques;
- elastic light scattering (Mie scattering, Rayleigh thermometry, nanoparticle size and shape, droplet sizing);
- Raman scattering (species concentration, temperature, diffusion);
- incandescence (thermal radiation, pyrometry, particles);
- velocimetry (flow fields);
- absorption, fluorescence (temperature, species, concentration)
Prof. Dr. de Ligny, 5 ECTS
The module consists of two courses. Students have to attend both to earn the ECTS for the module.
Optical properties of glasses
- Fundamental concepts: The electromagnetic spectrum and units, Absorption, Luminescence, Scattering
- Optical transparency of solids: Optical magnitudes and the dielectric constant, The Lorentz Oscillator, Metals, Semiconductors and insulators, Excitons, Reflection and polarization
- Optical glasses: Optical aberration and solutions, Dispersion properties and composition
- Colors in glasses: The eye, Optically Active Centers, Transition metals in glasses, Metallic and Chalcogenide nanoparticles
- Chromism: Thermochromism, Photochromism, Gasochromism, Electrochromism
- IR glasses: Chalcogenide, Fluorite glasses
- Optical Fibers: Principle, Manufacturing, Applications, Photonic fibers
Vibrational spectroscopies, from theory to practice
- Nature of vibrations inside matter
- Interaction light matter
- Instrumentation
- Raman application
- Infrared Spectroscopy
- Advanced technics
Prof. Dr. Hoffmann, 2 x 2.5 ECTS
(These are two 2.5 which can be studied indepently, although it is recommended to combine them. It is the only regularly offered module which is offered in German. )
Lasersystemtechnik 1 (Wintersemester)
- Einführung: Weltmarkt für Lasersysteme, Strahlquellen und deren Anwendung in der Materialbearbeitung
- Grundlagen zur Ausbreitung und Fokussierung von Laserstrahlung
- CO2-Laseranlagen: Strahlerzeugung, Bauformen für Strahlquellen, Strahlführung und –formung, Anlagenbeispiele, Anwendungen
- Festkörper-Laseranlagen: Strahlerzeugung, Bauformen, Strahlführung über Lichtleitkabel, Strahlformung, Anlagenbeispiele, Anwendungen
- Hochleistungdioden-Laseranlagen: Strahlerzeugung, Strahlführung und –formung, Anlagenbeispiele, Anwendungen
- Neuere Entwicklungen bei Strahlquellen und Laseranlage
- Introduction: Global Market for Laser Systems, Beam Sources and their application in material processing
- Fundamentals of Propagation and Focussing of laser radiation
- CO2-Laser Systems: Beam Generation, design of beam sources, beam guidance and –shaping, examples of systems, Applications
- Solid-State-Laser Systems: Beam Generation, design, beam guidance via light conducting cable, beam shaping, examples of systems, Applications
- High-Power-Diode-Laser Systems: Beam Generation, beam guidance and shaping, examples of systems, Applications
- Novel developments in beam sources and Laser Systems
Lasersystemtechnik 2 (Summersemester)
- Programmierung von Laseranlagen, Führungsverhalten
- Erzeugung von Verfahrbefehlen und deren Umsetzung in eine Vorschubbewegung
- Kommunikationstechniken für die Steuerung und Automatisierung von Laseranlagen
- Neuere Entwicklungen für „Laserroboter“
- Spanntechnik für das Laserstrahlschneiden
- Spanntechnik für das Laserstrahlfügen
- Sicherheit von Laseranlagen
Prof. Dr. Pflaum, Dr. Hohmann, 2.5 ECTS
Content
• Introduction to physical phenomena used in development of modern solid state lasers
• Practical approaches used in design of solid state lasers
• Introduction to modeling and simulation of the lasing process
• Modeling of basic solid state laser performance using a commercial software package
• Practical familiarization with various optical, opto-mechnical, and opto-electrical components used in solid state laser
The students gain the following competences:
• Setting up basic modeling of a solid state laser using ASLD software
• Be able to apply modeling for evaluation of performance of a basic laser system
• Apply basic optimization of the laser system model
• Identification of an appropriate laser system for a given application
• Performing basic characterization of laser beam output parameters
• Enhanced understanding of the laser physics
• Familiarization with modern design approaches used in solid state laser engineering
• Improved understanding of linear and nonlinear effects relevant for linear and nonlinear laser beam propagation